

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 MIT License

Copyright (c) 2017 P.W. DMS s.c.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

firanka

[image: _images/firanka.svg]Build Status [https://travis-ci.org/smok-serwis/firanka]
[image: _images/maintainability.svg]Maintainability [https://codeclimate.com/github/smok-serwis/firanka/maintainability]
[image: _images/test_coverage.svg]Test Coverage [https://codeclimate.com/github/smok-serwis/firanka/test_coverage]
[image: _images/firanka1.svg]PyPI version [https://badge.fury.io/py/firanka]
[image: _images/firanka2.svg]PyPI
[image: _images/firanka3.svg]PyPI
[image: _images/firanka4.svg]PyPI
[image: _images/apistatus.svg]license

firanka is a Python library to perform calculations on particular kinds of
functions. These functions have a domain, which is a single continuous subset
of the real number line. These functions can have any values.

firanka allows you do define two classes of such functions or series.

First are the DiscreteSeries. DiscreteSeries further divide the function
domain into slices (left-closed, right-open) that have constant values.
Manipulating DiscreteSeries and performing calculations on them is cheap.

Then you have FunctionSeries. These are simply defined by user-supplied
Python callable.

Best part is, you can join series together (given a joining operator),
slice them and so on.

Usage

Series

Can be imported from sai.series. A generic abstract superclass for series -
Series can be imported for checking if given object is a series.

Series are immutable, but non-hashable.

Read the source code of the base class to get
to know more about series operations.

Applying and joining

Applying requires a callable(index: float, value: current value) -> value.
Joining requires a callable(index: float, valueSelf, valueOther: values from self and other table) -> value.

DiscreteSeries

To use a DiscreteSeries you must give it a set of data to work with. These
will define intervals with given values, left-closed, right-open. as in:

fs = DiscreteSeries([(0,1), (3, 4), (5, 6)])
fs[0.5] == 1
fs[3] == 4
fs[5] == 6
fs.domain == '<0;5>'
fs[6] - NotInDomainError's

Datapoints given must be already sorted!. By default, the domain
will be both sides closed, from minimum to maximum given in data, but you can
specify a custom one:

fs = DiscreteSeries([(0,1), (3, 4), (5, 6)], '(0; 8>')
fs[0] - NotInDomainError's !
fs[6] == 6

Although you can’t specify a domain where it would be impossible to compute the value.
(ie. starting at smaller than zero). Doing so will throw a ValueError.

Note that when using join_discrete() sometimes other series might get calls
from beyond their domain. This can be seen for example here:

logs = FunctionSeries(math.log, '(0;5>')
dirs = DiscreteSeries([(0,1)], '<0;5>')

Raises ValueError due to math.log being called with 0
dirs.join_discrete(logs, lambda x, y: x+y)

FunctionSeries

Using FunctionSeries is straightforward. Just give them a callable and
a domain:

fs = FunctionSeries(lambda x: x**2, '<-2;2>')

ModuloSeries

ModuloSeries allow you to wrap a finite series in repetition.

fs = ModuloSeries(someOtherSeries)

By definition, ModuloSeries has the domain of all real numbers.

Note that someOtherSeries’s domain length must be non-zero and finite. Otherwise
ValueError will be thrown.

LinearInterpolationSeries

These are discretes, but allow you to define an operator that will
take its neighbours into account and let you return a custom value.

By default, it will assumes that values can be added, subbed, multed and dived,
and will do classical linear interpolation.

They can either utilize an existing discrete series, or be created just as
any other discrete series would be.

Builders

DiscreteSeriesBuilder

Sometimes you just need to update a DiscreteSeries, or to blang a brand new one. This little fella
will help you out.

You can pass a DiscreteSeries to build on or start from stratch:

kb = DiscreteSeriesBuilder(series)
kb = DiscreteSeriesBuilder()

kb.put(1,2)

series = kb.as_series()
isinstance(series, DiscreteSeries)

By calling as_series() you get a new DiscreteSeries instance returned.

Intervals

Can be imported from sai.intervals.

Interval is a continuous subset of the real number line.

You can create Intervals as follows:

Interval(-5, 5, True, False) == Interval('<-5;5)')

For more information use the source
Interval’s are immutable and hashable. They can be sliced:

Interval('<-5;5>')[0:] == Interval('<0;5>')

Slices work as a both-sides-closed range if both sides are shown!

You can check whether an interval contains a point

5 not in Interval('<-1;5)')

Or you can check for strict inclusion

Interval('<-1;1>') in Interval('<-2;2>')

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

